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Section 12.2 - Transforming to Achieve Lineaﬁty Part 1 (pp. 765-771)

In Chapter 3, we learned how to anélyze re‘lation'ships' between two quantitative variables that showed a
linear pattern, When two-variable data show a curved relationship, we must develop new techniques
for finding an appropriate model. This section describes several simple transformations of data that can

straighten a nonlinear pattern.

Once the data have been transformed to achieve linearity, we can use least-squares regression to /
~ generate a useful model for making predictions. And if the conditions for regression inference are met,

we can estimate or test a clalm about the slope of the population (true) regression line usmg the
' transformed data.

Applying a function such as the logarithm or square root to a quantitative variable is called transforming
the data. We will see in this section that understanding how simple functions work helps us choose and
use transformations to straighten nonlinear patterns.

Example - imagine that you t;:ave been put in charge of organizing a fishing tournament in which prizes
will be given for the heaviest Atlantic Ocean rockfish caught. You know that many of the fish caught
durlng the tournament will be measured and released. You are also aware that using delicate scales to
try to weigh a fish that is flopping around in a moving boat will probably not yield very accurate results.
It would be much easier to measure the length of the fish while on the boat. What you need is a way to

convert the Iength of the fish tro‘its weight.
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Here is Mlnltab output from separate regression analyses of the two sets of transformed Atla ntic Ocean
rockfish data.

AT = 4.066 +0.015 (VTP v

_ Transformation 1: {length?, weight) -d@ Combans” AN 9 Les )
Predictor Coef S8 Coet T B Ciq B2 N 3._._ 99.% ‘?-a
Constaht  4.066 - 6.902 0.5% 0.563 N

Lengthtd  0.0146774  0.0002402 61.07 o0.000 | O ComPan® 3 vaL oS
‘= 18,8412 R-8g = 99.5% R-—Sc;.('aaj) = 99 .5% | $. 341 VS '0 |24 tél

—_ _ .
_ - sea A
Transformation 2: (length, ¥weight) _ 71 Disenuss
Predictor Coef  SE Coef T P ; WwT T %rw'.r
Constant  —0.,02204  0.07763 ~3.28 0.780 '
Length D.246616 0.002868 86.00 0.000
$ = 0.124161 R-Sq = 99.8% R-Sg(adj) = 99.7%

__w —t

= ~0.012 + © 2.1'4@‘;)

@ G\J\‘T LS vineS !

.wv'r_ - Y, 066 + 0.0¢Y 67Y (LE‘JG—W?)

ﬂ:)\f = ~0.01LoM * 0.1‘16&6(\.6\36’6’#3

@ QS:—{ = 3( e = Ciobd ISeTsd WT.
: . | CNE
Ca\'r = 066 0,006 (34) = é%‘?.et3

-’\E T = —0.01%04 % 0.216646 (%6\ ¢.8556

&% Q%%%) (t44.¢4\




When experience or theory suggests that the relationship between two variables is described by a
power model of the form y = ax®, you now have two strategies for transforming the data to achieve
linearity.

1. Raise the values of the explanatory variable x to the p power and plot the points (x7, y).
2, Take the pth root of the values of the résponse variable y and plot the points (x, 2/})

What if you have no idea what power to choose? You could guess and test until you find a
transformation that works. Some technology comes with built-in sliders that allow you to dynamically
‘adjust the power and watch the scatterplot change shape as you do.

.@ @ r—;‘ Pﬂ?—coD

PU"«?—-\OB = =0 08':“1‘( + 0. zo‘]?‘?‘%r

@ l_ Pcsﬂ-\o‘bq'
Pvﬂ.-m-b z —o.l5465 + o.o4 1%3&(2@&7%5

@ fﬂ'ﬁe\:g = ~0.0859 + o.?,oqqqa,m

P@Dﬂ-z —osN 65 +t 0.6483<¢ (%o%) = 2,269 =

mel‘; :)% 169 \l SO¢ Sa‘i

HW: p. 786 problems 33, 35.




Section 12.2 - Transforming to Achieve Linearity Part 2 {pp. 771-785)

Transforming with logarithms - Not all curved relationships are described by power models. Some
reiationships can be described by a logarithmic model of the form

y=a+blogx.

Sometimes the relationship between y and x is based on repeated multiplication by a constant factor.
That is, each time x increases by 1 unit, the value of y is multiplied by b. An exponential model of the
form y = ab* describes such multiplicative growth.

_If an exponential mode! of the form y = ab* describes the relationship between x and y, we can use
logarithms to transform the data to produce a linear relationship.

[0?)‘-3 * /@‘jcﬂ:.,g = lOcj v ® lo%om- (éicﬁb 3 LQ%U fogq « x(ogb

We can rearrange the final equationaslogy =loga + (log Bix. Notice that log a and log b are constants
because aand b are constants -

So the equation gives a linear model relatmg the explanatory varsable X to the transformed variable
log y.

Thus, if the relationship between two variables follows an exponential model, and we plot the logarithm
(base 10 orbase e} of y against x, we should observe a straight-line pattern in the transformed data.

If we fit a least-squares regression line to the transformed data, we can find the predicted value of the
logarithm of y for any value of the explanatory variable x by substituting our x-value into the equation of
the line. )

To obtain the corresponding predic-taion for the response variable y, we have to “undo” the logarithm
transformation to return to the original units of measurement. One way of doing this is to use the
definition of a logarithm as an exponent: ' '-05 ba = x =) b‘s - a

Example - Moore's Law and Computer Chips {p. 773) @"

Gordon Moore, one of the founders of Intel Corporation, predlcted in 1965 that the number of
transistors on an mtegrated circuit chip would double every 18 months. This.is Moore’s law, one way to
measure the revolution in computlng Here are data on the dates and number of transistors for Intel
microprocessors:

Processor Date  Translstors
4004 171 2,350

8008 1972 2,500

BOB0 1074 5,000

5086 1978 26,000

286 1982 120,000

388 1085 275,000

486 DX 1989 1,180,000
Pantium ) . 1983 3,100,060
Pentium i 1997 7,500,000
Pentium il 1999 24,000,000
Pantium 4 2000 42,000,000
Itaniuss 2 2003 220,030,000
ltanium 2 w/9MB cache 2004 592,060,000
Duzl-core llanium 2 2006 1,700,000,000
Six-core Xeon 7400 2008 1,900,000,000

8-core Xeon MNehalem-EX 2010 2,300,000,000




(a) A scatterplot of the natural logarithm (log base e or In) of the number of transistors on a computer
chip versus years since 1970 is shown. Based on this graph, explain why it would be reasonable to use an
exponential model to describe the refationship between number of transistors and years since 1970.
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(b) Minitab output from a lmear regression analysis on the transformed data is shown below. Give the
equation of the least-squares regression line. Be sure to define any variables you use.

Predictor ‘Coef  SF Coef T P
Constant 7.0647  0.2672  26.44 0.000
Years since 1970 0.36583 0.01048 34.91 0.000
%] § = 0.544467 R-5q = 98.9% R-Sqladj) = 98.8%

\/G::—a = ses (155
- S) T 7. 0641+0.3¢ 95(‘;2%’

@ JSE modT L To PedoerT t oc TnuascTere r-k wWwo

IV:G_\\’““%) 7.0+ 0.365%¢3(50) = 15, 3560

Byl

e'“m5> e = [.0L% X [0‘ T%AS:S'TOA—%

S (d) A r95|dual plot for the linear regression in part (b} is shown below. Discuss what this graph tells you
about the appropriateness of the model.
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" Power Models Again

When we apply the logarithm transformation to the response variable v in an exponential model, we
produce a linear relationship. To achieve linearity from a power model, we apply the logarithm
transformation to both vanables Here are the details: :

A power model has the form: y = axp, where a and pare constants.
Take the logarithm of both sides of this equatioh. Using pfbperties' of logarithms,
logy = Iog(axp) Iog a+ log(x?) =log a + p iog x

The equation logy=loga+p I'og x shows that taking the logarithm of bath variables results in a linear
relationship between log x and logy. - :

3. Look carefully: the power p in the power model becomes the s!ope of the straight line that links log y
to log x.

If a power model describes the relationship between two variables, a scatterplot of the logarithms of
both variables should produce a hnear pattern. Then we can fit a least-squares regression line to the
transformed data and use the linear model to make predictions. .

Example (p. 778) - On July 31, 2005, a team of astronomers annbunced that they had discovered what
appeared to be a new planet in our solar system. Originally named UB313, the potential planet is bigger
than Pluto and has an-average distance of about 9.5 billion miles from the sun. Could this new
astronomical body, now cailed Eris, be a new planet? At the time of the discovery, there were nine
known planets in our solar system. Here are data on ‘the distance from the’ sun (m astronomlcal units,
AU) and period of revolution of those planets. ‘ :

~ Distance from sun Period of revolution
= ™7 Planet  (astronomical units) (Earth years)
F=aRE T :
1] Mercury 0387 0241
= Venus 0723 0.615
- R SR 5 Earth 1.000 1.000 .
0 e 2t ECREIR Mars 1.524 1.881
Divtanee (AU] :
i (40) Jupiter 5.203 11.862
. Galurm 9539 : 28.456
iz
N Uranus 19.191 B4.070
Neptune - 30.081 164.810
Pluto 39.529 248.530

" Describe the relationship between distance from the sun and period of revolution.
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{a} Based on the scatterplots below, explain why a power model would provide a more appropriate
description of the relationship between period of revolution and distance from the sun than an
exponential model. :
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(b) Minitab output from a linear regression analysis on the transformed data (In{distance), In{period)) is
shown below. Give the equation of the least-squares regression line. Be sure to define any variables you
use.

i?réd:i.‘c:tnr Coef 5B Coef T P
Constant 0.0002544  0.0001759 .45 0.191
In{distance) 1.4998% 0.00008 18598.27  0.000
S w 0.000393364 R-Sq = 100.0% R-Sg(adi) = 100.0%

Va(Pozion> = 0000254 + 1 vq4¢4 b (D12 T

{c) Use your model from part (b} to predict the period of revolution for Eris, which is
9,509,000,000/93,000,000 =102.15 AU from the sun. Show your work.

l:.(’(:—rf‘t\\ebﬁ_z 6.000L5N * (49996 In (107--‘5'3 .93 7

~—\ £.979 ' .
pimon = XTpan vas ) -~

(d) A residual plot for the linear regression in part (b) is shown below. Do you expect your prediction in
part (c) to be too high, too low, or just right? Justify your answer.
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HW: p. 788 problegn?ﬂ?'?, 39, 41, 45-50. 8z f_ﬂ@— )




