NC.M1.A-SSE.1a: Interpret the structure of expressions. Identify and interpret parts of a linear, exponential, or quadratic expression including terms, factors, coefficients, and exponents.

An algebraic expression consists of SUMS AND/OR PRODUCTS OF #'S + VARIABLUS

For example in the algebraic expression 0.01d, the letter d is called a VARIABLE and the number 0.01 is called the

In Algebra, variables are SYMBOLS USED TO REPRESENT VALUET.

Any letter may be used as a variable.

Example 1: 0.10d 2x+4 3+ 7.9 4ed

A term of an expression may be a number, a variable, or a product or quotient of numbers and variables.

Example 2: 2x+4 Torems: 2x, 4.

An expression like x^2 is called a <u>Power</u>. In this case, the number 2 is referred to as the <u>Exponer</u> while the variable x is referred to as the <u>Base</u> of the expression.

Application 1. For each of the following, identify the terms, variables, coefficients, factors, bases, and exponents as they apply.

1.3x4 Torum: 3x4 COFF: 3 BASE: X

VAR: X FACTORS: 3, X4 FXPONOUT: 4

2.5z2+16 Tomms: 522, 16 COFF:5 BASE: 2 VAR: Z FACTORS: 5, 2 EXP: 2

3.16u2-3 Torms: 16u2,-3 coef: 16 BASE: U VAR: 4 FACTORS: 16,4 EXP: 2

4.5+6.35 Torms: 5, 6.35 COFF: 6.3 BASE: P/A
VAR: S FACTURS: 6.3 S EXP: N/A

Terms and coefficients in algebraic expressions can be interpreted to represent quantities in context.

Example 3:

a. The height (in feet) of a balloon filled with helium can be modeled with the expression 6 + 5s where s is the number of seconds after the balloon is released. Identify and interpret the terms and coefficients in the expression.

TORMS: 6 -> INITIAL HT OF BALLOON 6F+

55 -> BALLOON RISES AT A RATE OF

5F+/SEC (SLOPE = RATE OF A)

b. Suppose a repair company charges a flat fee of \$90 to come to your house to repair a washing machine. Additionally, they charge \$40 for every hour the repair takes. Write an expression for the total cost, T, to repair the washing machine if it takes hours.

T = 90 + 40H

Application 2.

- 5. Coach Martinez orders 250 key chains printed with his athletic team's logo and 500 pencils printed with their Web address.
- a. Write an algebraic expression that represents the total cost of the order if k key chains and p pencils are ordered.

 K = COST OF KFY CALL P = COST OF PENCIL

250K+ 500P.

b. Identify the terms and coefficients in the expression. Explain what the coefficients represent.

TMMS! 250K COST: 250

6. The volume of a cylinder is π times the radius r squared multiplied by the height h. Write an expression for the volume.

V = Tr2h

7. Jocelyn makes x dollars per hour working at a grocery store and n dollars per hour babysitting. Write an expression that describes her earnings if she babysat for 25 hours and worked at the grocery store for 15 hours.

and the state of t

15x + 25 m - - - - - - - - - - - -

Activity. Let's return to the helium balloon example. Recall that the height (in feet), h, of a balloon filled with helium can be modeled with the equation h = 6 + 5s where s is the number of seconds after the balloon is released.

a. Use the equation to make a table and a graph of values of (h, s) for s = 0 to 10 seconds in steps of 2 seconds. Label the axes on the graph.

Time (seconds)	Height (feet)
0	G
2	16
4	26
6	36
8	46
10	56

b. Use your equation to determine h(12) and explain the meaning your answer. Include units in your explanation. h(12) = 66 + 5(12) = 66 + 66

AFTOR 12 Sec, BALLOOD WILL BE 66 FT HIGH.

The "Rule of 4"

This activity is a very good illustration of something in mathematics called the "Rule of 4." This is a very important rule and can be applied at all levels of mathematics.

Essentially the rule says that mathematical expressions, equations, and functions can be expressed *four different ways*:

VERBAL (WORDS)	SYMBOLIC #5
STARTS AT 6 Pt, RISIS	ALG
5 ft/sec.	h = 6+5g
NUMURICAL (DATA, TBLS)	GRAPHICAL.
TIH	1.
2/16	b -

Practice

- 1. A certain smartphone family plane costs \$55 per month plus additional usage costs. If x is the number of cell phone minutes used and y is the number of megabytes of data used, interpret the following expressions:
- ADD'L COST = \$.25/MIDUTES FOR TALKING a. 0.25x
- ADD'L COST = \$2/MBGABYTE FOR DATA.
- c. 0.25x + 2y + 55 TOTAL COST.
- 2. An object is dropped from a height of 250 feet. The height of the object, h, above the ground at s seconds is described by the equation $h = -16s^2 + 250$.
- a. What is the height of the object at s = 0 seconds? 250 C+

b. What is the height of the object at s = 2 seconds? $-16(2)^2 + 150 =$

$$-16(2)^{2} + 250 =$$

$$-64 + 250 = 186 \text{ C+}.$$

3. Complete the following using the "Rule of 4."

Ver	bal	:

Symbolic:

The sum of 4 and 5 times a number x

Graphical:

