1. The Sampling Distribution of \widehat{p}

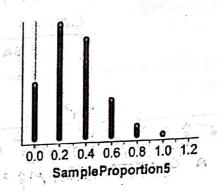
Let's turn once again to the hyena experiment on the first day of the course. Suppose a team took one sample and found the proportion of males to be \hat{p} =0.20. Since another random sample would likely result in a different estimate, we can only say that "about" 20% of the population of hyenas in the Croatan NF are males. In this section, we are going to use sampling distributions to clarify what "about"

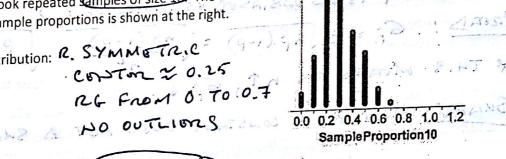
Activity

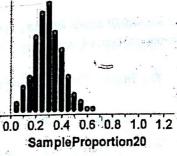
Suppose a team performed the hyena experiment again. First they chose repeated samples of size 5. The distribution of sample proportions is shown at the right.

SKEWSD RIGHT Describe the distribution:

Conton 2 0.3 RG FROM O TO 1 OSA


NO OUTLIERS 4-


The team then took repeated samples of size 10. The distribution of sample proportions is shown at the right.


Describe the distribution: R. S.YMMETR.C Contar 2 0.25 RG FROM 0 70:0.7

Finally, the team took repeated camples of size 20. The distribution of sample proportions is shown at the right.

Describe the distribution: 2. SYMMETRIC CENTER \$ 0.25 RG From 0 70 0.65 NO OUTLIERS

Summarize what happened to the center, shape and spread as the sample size was increased from 5 to

20.

CENTER STAYED ABOUT THE SAME. SHAPE BECAME MORE SYMMETRIC. LESS SPREAD (VARIABILITY)

Binomial Distribution - Is the hyena experiment binomial? Let X = the number of males obtained in each sample. Is X a binomial random variable?

B: BINARY? YES, MALE + FEMALE

1: 12 DEPENDENT? YES, RADOM SAMPLINE (QUEDOMASTEUD)

N: FIXED n? YES, BAMPLE SIZE WAS CODSTANT

S: SUCCESS PROB FIXED? NO, SIDCE W/O REPLACEMENT,

& HOWEVER, IF POP. SIZE IS LARGE WE WILL BE CLOSE TO BIDOM.AL (1090 CONDITION).

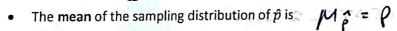
SAMPLE SIZE h This means that $\hat{p} =$

From Chapter 6, we know that the mean and standard deviation of a binomial random variable X are:

 $\mu_X = n\rho$ and $\sigma_X = \int n\rho (1-\rho)$

SINCE PZX = 1X, WE ARE JUST MULTIPLYING A RADDOM VARIABLE BY A CODSTANT: Mp = 1 Mx = 1 (np) = P => -- [Mp = P

(TUIS MEADS P IS AD UDBIASED ESTINATOR OF P.)


SPRMD: 6: 2 1 (np(1-p) = np(1-p) 2 | p(1-p)

& THIS MOMAS AS NT, GAL.

SHAPE: MULT. BY A CONSTANT DOES NOT A SHAPE.

Sampling Distribution of a Sample Proportion

Choose an SRS of size n from a population of size N with proportion p of successes. Let \hat{p} be the \bigwedge sample proportion of successes. Then:

The standard deviation of the sampling distribution of \hat{p} is $6\hat{p} = \sqrt{\frac{\rho(1-\rho)}{\rho}}$

as long as the 10% condition is satisfied: $n \le (1/10)N$.

As n increases, the sampling distribution of \hat{p} becomes approximately Normal. Before you perform Normal calculations,

check that the Normal condition is

satisfied: $np \ge 10$ and n(1-p)≥10.°

SUEET

Check Your Understanding - About 75% of young adult internet users (ages 18-29) watch online video. Suppose that a sample survey contacts an SRS of 1000 young adult internet users and calculates the proportion $\,\hat{p}$ in this sample who watch online video.

(a) What is the mean of the sampling distribution of \hat{p} ? Explain.

(b) Find the standard deviation of the sampling distribution of \hat{p} . Check that the 10% condition is met. WE CAD ASSOME MORE THAN 10 (1000) = 10,000 INTORNET USARS.

(c) Is the sampling distribution of
$$\hat{p}$$
 approximately Normal? Check that the Normal condition is met.

The sampling distribution of
$$\hat{p}$$
 approximately Normal? Check that the Normal condition is included by $S_1 > C_1 = C_2 = C_1 = C_2 = C$

(d) If the sample size were 9000 instead of 1000, how would this change the sampling distribution of \hat{p} ? IT WOULD STILL BE APPROX. HORMAL WITH MA = 0.75 BUT

2. Using the Normal Approximation of $\,\widehat{p}$

Example - The superintendent of a large school district wants to know what proportion of middle school students in her district are planning on attending a four-year college or university. Suppose that 80% of all middle school students in her district are planning to attend a four-year college or university. What is the probability that an SRS of size 125 will give a result within 7 percentage points of the true value?

- (1) STATE! WE WANT TO FIND PROB. THAT THE 90 OF W/S STUDINTS WHO PLAN TO ATTEND A 4-YR COLLEGE/UDIN. FALLS BETWEEN 7370 AND 8790. P(0.73 & P < 0.87)
- (2) PLAN: MP = 0.8 SIDE P = 0.8. SIDE DISTRICT IS LARGE WE CAD ASSUME THAT THORE ARE MORE THAN 10(125) = 1850 M/S STUDINTS. (INDEPENDENCE). =>

WE CONSIDER À TO BE APPROX. HORMAT (0.8, 0.036). 6=0.036 Do!

P(0.73 = P = 0.87) = 0.948 ALS IN INCREASED, CEPTURE STATE MAP. BECAME HORE SYMTS 180 21. SPENERAL

CONCLUDE! ABOUT 95% OF ALL SRS'S OF SIZE 125 WILL HW: read pp. 440-447; do problems: p. 439 - 21-24; pp. 447 - 27, 29, 33, 35, 37, 41, 47*, 48*.

GIVE A SAMPLE PROPORTION W/12 7 PTS OF TRUE PROPORTION.